The AMendate program allows to build an optimization model, to start this optimizationon a local level as well as via an interface with a server and to visualize the results.
Starting the Program
When the program is started, the projects menu appears first. In the "Local working directory" the storage location of the projects can be seen. The location can be chosen arbitrarily. In the "Projects" tab, an existing project can be renamed and opened, or a new project can be created. In addition, in the "Example Projects" tab, already prepared example optimizations can be opened and used as a template or tutorial.
The menu can be accessed at any time via the "Menu" filed. Next to this the name of the currently active project is located.
Summary
- Menu "Projects" to create or open new projects
- There should be no spaces or special characters in the memory path
- "Sample Projects" offers already built up optimizations as templates and tutorials
Settings
The settings button opens a menu in which various visualization and general settings can be made. All settings are saved and retained when the program is reopened. (For professionals: in the file XXXXX further settings can be made on text basis.)
The tab "Visualization" offers settings around the image area. Both the graphical representation of the objects and the representation of the boundary conditions and results can be changed.
The tab "General" contains the language of the interface, the used unit system and the definition of a standard load case activated from the beginning.
Summary
- The settings meu offers many options fpr customizing the software, divided into the tabs "Visualization" and "General"
Visualization Space
All loaded objects as well as forces, moments and fixtures are displayed in the visualization area during the model generation. In the results area, the view changes to display the calcualtion results.
The display of the coordinate system can be reduced/enlarged or deactivated via the settings menu. In addition, the background pattern and color, brightness, shading and edge smoothing strength can be adjusted. In addition, the colors of the objects and boundary conditions can be adjusted according to your own ideas
Using the buttons in the lower right area, you can select both an orthographic and a perspective view, as well as different views according to the coordinate axes. In addition, screenshots of each view can be created and automatically saved in the project folder. Only the visualization area and the coordinate system are considered. The program interface itself is not saved.
The "Explosion" function pulls the individual objects apart to ensure a better view of the individual objects. Sometimes boundary conditions in this representation can be better applied to individual sub-objects.
In the visualization area there is a field in the bottom left corner in which messages are played back to the user. These messages contain both positive messages, e.g. when successfully loading a new file, and error messages, which are intended to draw the user's attention to a particular situation. This field can also be expanded upwards to display older messages.
Summary
- Display of all relevant information in the visualization area
- Extensive adjustments possible via the settings menu
- Various buttons at the bottom right to control the display
- Success and error messages are displayed in the information field
Model Generation and Visualization of an Optimizatio
The program is mainly divided into the three areas "Configuration", "Optimization" and "Results". The "Configuration" tab contains all settings for load cases, loads, materials and solids. Analogue the settings for the optimization parameters are entered in the Optimization tab. In the last tab "Results" the progress can be followed and the results can be viewed after starting the calculation.
The project can be saved at any time at the bottom left and continued at a later time.
Configuration: Definition of the Optimization Model
The Configuration area contains the "Load Cases" area in which load cases are added and/or removed. A name will be assigned to each load case, e.g. braking or accelerating. Either all required load cases can be created directly at the beginning or step by step during model construction.
Below are three further tabs, which are described in the following:
Objects/Surfaces
First, all STL files required for the optimization are loaded into the program in the "Objects/Surfaces" tab. This can be done either via the "Plus" button or by drag-and-drop from the Windows Explorer. Incorrectly loaded or revised objects can be removed individually or replaced by a new version. A removed file will not be considered during the optimization, but it will not be deleted from the project folder so that it can be loaded again.
An STL file is activated by clicking on it, so that a property field opens in the lower area.
- Here you can change the name and select the material.
- The material database can be extended with specific material properties via the gear next to the material field.
- For exactly one volume, the assignment must be defined as a design area. Several design areas within a model are not possible, even though the volume of the design area may be shaped as complex as desired.
Boundary Conditions
In the Boundary conditions area, the "Plus" button is used to create the boundary conditions required for optimization. To do this, enter a name and select the concerned space. The load case relevant for the boundary condition (several are also possible) is then activated in the lower list of load cases. The boundary condition can be either a force, a fixture or a moment. Forces, fixtures and moments are always specified in component notation in the main coordinate directions
Although the units within a model must be consistent, the choice of the unit system is left to the user (see Settings). The metric system is provided with the units kilogram, millimeter and Newton (kg, mm, N). STL files are often stored in mm and forces are given in N. Accordingly, the unit of the appropriate moment is Nmm
For the different boundary conditions, there are different approaches for the structure and design of the optimization model. In the following, different possibilities for the generation of different boundary conditions are presented and special features of the software are pointed out. A specified boundary condition (force, fixture, moment) always refers to the entire object. To support the input process, an area of a volume can be clicked directly after activating the check box "Force" or "Moment" and thus a direction orthogonal to the surface can be defined. This can be particularly advantageous for round surfaces, hollow cylinders of bolting points or bearing seats. By dragging the mouse pointer, an approximate load size can be defined directly afterwards. The exact values of the spatial directions can then be corrected and adapted via the input fields.
- Loads
- Forces are specified per object (volume) and distributed evenly over this object.
- For a surface load, the active surface with thickness 0 must be loaded as a separate object (.STL file).
- If only a single force is to act as a point load, a separate (very small) volume must be generated for this. Here it should be pointed out that an idealized point load in reality always corresponds more to an area/volume load!
- Fixtures
- Displacements can be locked in the x, y and z directions.
- The activation of all displacement restrictions corresponds to a fixed fixture.
- A floating bearing can be created by selecting only one or two displacement restriction(s).
- For optimization, each direction must be locked (activated) at least once on any object, so that no rigid-body movement can occur. (Exception when using symmetry, see below).
- Moments
- Moments also affect entire objects and can be defined in x, y and z directions.
Load Cases
All created boundary conditions are listed in the Load Cases area. Selecting a load case marks all active boundary conditions. In the same way, individual boundary conditions can be activated by clicking and thus assigning one to the load cases.
The corresponding force arrows in the visualization area also adapt to the selection of the load case. Before starting, the optimization model can be checked for completeness and selection of the correct boundary conditions in the respective load cases and adjusted if necessary.
Summary
Optimization (Definition of an Optimization)
Using the previously defined materials and boundary conditions, an analysis can already be performed for the selected geometry. In order to carry out a geometry optimization, further parameters must be set.
Design Type
First of all, a distinction can be made between the three settings "filigree", "normal" and "massive". This influences the design, which means that "filigree", "massive" or "normal" structures are formed during optimization. An example for the different settings is shown in the picture below. It should be noted that an optimization result with the "Filigree" setting is not automatically lighter than a "Massive" setting, because many fine struts can make the weight heavier than a few massive ones.
Figure filigree, normal massive
Calculation Type
Further it can be selected whether only an "estimation", an "optimization" or an "optimization" up to the printable design should take place. In most cases, an "estimation" only takes a few minutes and gives an overview of the weight and stress development that an optimization can achieve under the given boundary conditions. The "optimization" can take up to a few hours, depending on the conditions, and provides a detailed/high resolution design proposal. The "Manufacture" option takes the longest time, because here the resolution at the end of the optimization is significantly increased in order to obtain a good printable surface and structure of the component in detail.
Optimization Goal
Then the optimization target must be defined. With AMendate, a target stress is specified that serves as the reference during optimization. For this purpose, a fatigue strength value of the material can be used and provided with an additional safety factor. The software does not take any safety factors internally into account when determining the design. This must be included in the maximum stress by the engineer. Through the stress-oriented optimization, an optimally uniformly loaded component is developed, in which above all the transitions between struts and surfaces are formed optimally and with few stress increases. The standard unit of stress MPa = Nmm^2 corresponds to the previously mentioned system of units
Symmetry
An axis symmetry around the coordinate origin can be selected for the calculation of symmetrical components. A model structure with complete geometry is recommended for this. For the calculation, however, only the positive area of the spatial axes is used, the result is then mirrored into the negative area. Both the geometry and the boundary conditions are mirrored. Therefore, for loads beyond the zero point (e.g.: area load of a symmetrical bridge), only the load portion for the positive coordinate space may be specified (halved force, corresponding to half the area, e.g.: only force on one of the bridge sides). For a correct calculation ALL boundary conditions must be symmetrical, this applies to fixtures, forces and moments. Errors can easily creep in, especially when defining moments.
Configuration File
Finally, all the specified information can be viewed in the configuration file. Other special settings are also possible here, which are of particular interest to simulation experts.
The following settings can be made under User Setting:
onlyFEM | An analysis of the design area is carried out. |
Further settings can be made in the FEM area:
solver= Extern CG | Conection to solver: Externer solver from AMendate z.B. AMendateCudaSolver. Uses an integrated conjugated gradient solver. |
solverIP=localhost | IP des Externen Solvers. Lokal oder Cloud, wobei die Matrix lokal aufgebaut und an die Berechnungseinheit gesendet wird. Hierbei können große Datenmengen mit entsprechendem Zeitaufwand bewegt werden. |
solverPort=1234 | Port über den der CudaSolver angesprochen wird. Dieser kann beliebig gewählt werden, entsprechend dem angegeben Wert beim Start des Solvers. |
eigenThreads=2 | Anzahl der Threads, die für den Aufbau der Matrix genutzt werden können. Hierbei sollte immer mindestens ein Kern frei bleiben. |
solverMaxMemory=10 | Definition des maximal verfügbaren Speichers für die Steifigkeitsmatrix. Entspricht übertragen der Auflösung des Modell und bestimmt somit die Berechnungszeit. Bei GPU-Solving darf der GPU-RAM nicht überschritten werden. (1 GB bis 14 GB ggfs. bei CPU auch bis über 100 GB) |
Folgende Ausgabedateien sind auswählbar:
export_stl_name_MC_Smooth | Ergebnisgeometrie: stl Glättung MarchingCube |
export_stl_name_MC_Smooth_intersection | Verschneidung des aktuellen Optimierungsergbnisses in jeder Iteration mit dem Designbereich auf Voxelbasis |
Spannungen | |
export_ply_name_Stress_RGB | Spannungen: ply in Farbe |
export_ply_name_Stress | Spannungen: ply Werte der Knoten |
export_mrc_name_Stress | Spannungen: mrc Werte der Knoten |
export_ply_name_Stress_Prop | Spannungen: ply Werte der Flächen |
Verschiebungen | |
export_ply_name_Dis_RGB | Verschiebungen: ply in Farbe |
export_ply_name_Dis | Verschiebungen: ply Werte der Knoten |
export_ply_name_Dis_Prop | Verschiebungen: ply Werte der Flächen |
Ergebnisgeometrie | |
export_stl_name_MC_Smooth_intersection intersectionDetail = | Verschneidung des aktuellen Optimierungsergbnisses mit dem Designbereich auf Voxelbasis in jeder Iteration. 0...3 Einstellung der Auflösung auf dessen Basis die Verschneidung durchgeführt wird. Ein guter Wert hierbei ist 2. |
Summary
Results
Die erste Iteration wird angezeigt, sobald ein Ergebnis vorliegt. Weitere Iterationen werden angezeigt, sobald diese berechnet sind. Über die Steuerung im Feld Ergebnisiterationen kann manuell zwischen den verschiedenen Iterationen gewechselt werden oder ein automatischer Ablauf betrachtet werden.
Über den AMendate Log kann der aktueller Fortschritt in Form des Konsolenoutputs verfolgt werden.
Als Ergebnisdatei liegt eine STL-Datei vor, die meist direkt durch ein additives Verfahren gefertigt werden kann.
Es können auch ältere Ergebnisdateien in den Projekt ausgewählt und angezeigt werden.
Summary
Model Generation and Visuallization of an Analysis
Es können sowohl Optimierungsergebnisse als auch Originalbauteile analysiert werden. Nach Durchführung beider Analysen lassen sich die Ergebnisse vergleichen und so die Performance der Optimierung bewertet werden.
Für die Analyse eines Objekts wird der Modellaufbau genau wie für eine Optimierung durchgeführt. Alle benötigten Dateien (Design/Nondesignspace) werden eingeladen und die entsprechenden Randbedingungen und Lastfälle erstellt. Das zu analysierende Objekt muss im Bereich Objekte/Flächen als Gestaltungsbereich aktiviert werden.
Der Bereich Optimierung muss nicht ausgefüllt werden, allerdings muss in diesem Bereich die Konfigurationsdatei geöffnet und unter "User Settings" der Befehl "onlyFEM" hinzugefügt werden. Dadurch wird nur eine Analyse ohne Optimierung durchgeführt. Zusätzlich kann die Auflösung unter FEM verändert werden, um genauere Ergebnisse zu erreichen. Die Auflösung einer Optimierung / Analyse wird immer entsprechend der stl mit dem größtem Volumen innerhalb des Arbeitsordners abgeschätzt. Wenn die stl-Datei des originalen Designspaces im Ordner verbleibt, richtet sich die Auflösung also nach diesem Volumen.
Das Ergebnis der Analyse zeigt die Spannungen und Verschiebungen in dem ausgewählten Objekt an.
Summary
Add Comment