...
Although the units within a model must be consistent, the choice of the unit system is left to the user (see Settings). The metric system is provided with the units kilogram, millimeter and Newton (kg, mm, N). STL files are often stored in mm and forces are given in N. Accordingly, the unit of the appropriate moment is Nmm
Für die verschiedenen Randbedingungen ergeben sich verschiedene Herangehensweisen für den Aufbau und die Ausgestaltung des Optimierungsmodells. Im Folgenden werden verschiedenen Möglichkeiten für die Erzeugung unterschiedlicher Randbedingungen vorgestellt und auf Besonderheiten der Software hingewiesen. Eine angebene Randbedingung (Last, Lager, Moment) bezieht sich immer auf das gesamte Objekt. Zur Unterstützung des Eingabeprozesses kann nach Aktivierung der Checkbox "Kraft" oder "Moment" direkt eine Fläche eines Volumens angeklickt und somit eine Richtung, orthogonal zur Oberfläche, definiert werden. Dies kann insbesondere für runde Flächen, Hohlzylinder von Anschraubpunkten oder Lagersitzen von Vorteil sein. Durch Ziehen des Mauszeigers kann im Anschluss direkt eine ungefähre Lastgröße definiert werden. Die exakten Werte der Raumrichtungen können im Anschluss über die Eingabefelder korrigiert und angepasst werden.
- Loads
- Kräfte werden pro Objekt (Volumen) angegeben und gleichmäßig auf dieses verteilt.
- Für eine Flächenlast muss die Wirkfläche mit Dicke 0 als ein eigenes Objekt (.STL-Datei) eingeladen werden.
- Soll nur eine einzelne Kraft als Punktlast wirken, muss hierfür wiederum ein eigenes (sehr kleines) Volumen erzeugt werden. Hierbei sollte darauf hingewiesen sein, dass eine idealisierte Punktlast in der Realität immer eher einer Flächen/Volumenlast entspricht!
- Fixtures
- Verschiebungen können in x-, y- und z-Richtung gesperrt werden.
- Die Aktivierung aller Verschiebungsrestriktionen entspricht einem Festlager.
- Ein Loslager kann durch die Auswahl von nur einer oder zwei Verschiebungsrestriktion/en erzeugt werden.
- Für eine Optimierung muss jede Richtung mindestens einmal an einem beliebigen Objekt gesperrt (aktiviert) sein, sodass keine Starrkörperbewegung auftreten kann. (Ausnahme bei Anwendung von Symmetrie, siehe unten)
- Verschiebungen können in x-, y- und z-Richtung gesperrt werden.
- Moments
- Momente wirken ebenfalls auf ganze Objekte und können in x-, y- und z-Richtung definiert werden.
Load Cases
Im Bereich Lastfälle werden alle erstellten Randbedingungen aufgelistet. Durch Anwählen eines Lastfalls werden alle aktiven Randbedingungen markiert. Genau so können einzelne Randbedingungen durch klicken aktiviert und somit den Lastfällen zugeordnet werden.
Auch die entsprechenden Kraftpfeile im Visualisierungsbereich passen sich der Auswahl des Lastfalls an. So kann das Optimierungsmodell vor dem Starten auf Vollständigkeit und Auswahl der richtigen Randbedingungen in den jeweiligen Lastfällen überprüft und gegebenenfalls angepasst werden.
...
For the different boundary conditions, there are different approaches for the structure and design of the optimization model. In the following, different possibilities for the generation of different boundary conditions are presented and special features of the software are pointed out. A specified boundary condition (force, fixture, moment) always refers to the entire object. To support the input process, an area of a volume can be clicked directly after activating the check box "Force" or "Moment" and thus a direction orthogonal to the surface can be defined. This can be particularly advantageous for round surfaces, hollow cylinders of bolting points or bearing seats. By dragging the mouse pointer, an approximate load size can be defined directly afterwards. The exact values of the spatial directions can then be corrected and adapted via the input fields.
- Loads
- Forces are specified per object (volume) and distributed evenly over this object.
- For a surface load, the active surface with thickness 0 must be loaded as a separate object (.STL file).
- If only a single force is to act as a point load, a separate (very small) volume must be generated for this. Here it should be pointed out that an idealized point load in reality always corresponds more to an area/volume load!
- Fixtures
- Displacements can be locked in the x, y and z directions.
- The activation of all displacement restrictions corresponds to a fixed fixture.
- A floating bearing can be created by selecting only one or two displacement restriction(s).
- For optimization, each direction must be locked (activated) at least once on any object, so that no rigid-body movement can occur. (Exception when using symmetry, see below).
- Moments
- Moments also affect entire objects and can be defined in x, y and z directions.
Load Cases
All created boundary conditions are listed in the Load Cases area. Selecting a load case marks all active boundary conditions. In the same way, individual boundary conditions can be activated by clicking and thus assigning one to the load cases.
The corresponding force arrows in the visualization area also adapt to the selection of the load case. Before starting, the optimization model can be checked for completeness and selection of the correct boundary conditions in the respective load cases and adjusted if necessary.
Info | ||
---|---|---|
| ||
Optimization (Definition of an Optimization)
Mithilfe der zuvor definierten Materialien und Randbedingungen kann bereits eine Analyse für die gewählte Geometrie durchgeführt werden. Um eine Geometrieoptimierung durchzuführen, müssen noch weitere Parameter gesetzt werden.
Design Type
Zunächst kann zwischen den drei Einstellungen "Filigran", "Normal" und "Massiv" unterschieden werden. Hiermit wird die Formgebung beeinflusst, wodurch eher feine (filigran), eher massive (massiv) oder als Zwischenweg "normale" Strukturen während der Optimierung ausgebildet werden. Ein Beispiel für die verschiedenen Einstellungen sind in dem untenstehenden Bild gegenübergestellt. Es ist zu beachten, dass ein Optimierungsergebnis mit der Einstellung "Filigran" nicht automatisch leichter ist als ein "Massives", denn durch viele feine Streben kann das Gewicht auch größer sein als durch wenige MassiveUsing the previously defined materials and boundary conditions, an analysis can already be performed for the selected geometry. In order to carry out a geometry optimization, further parameters must be set.
Design Type
First of all, a distinction can be made between the three settings "filigree", "normal" and "massive". This influences the design, which means that "filigree", "massive" or "normal" structures are formed during optimization. An example for the different settings is shown in the picture below. It should be noted that an optimization result with the "Filigree" setting is not automatically lighter than a "Massive" setting, because many fine struts can make the weight heavier than a few massive ones.
Figure filigree, normal massive
Calculation Type
Weitergehend kann ausgewählt werden, ob lediglich eine "Abschätzung", eine "Optimierung" oder eine "Optimierung" bis hin zum druckbaren Design stattfinden soll. Eine "Abschätzung" dauert in den meisten Fällen nur wenige Minuten und gibt einen Überblick über die Gewichts- und Spannungsentwicklung, die eine Optimierung unter den gegebenen Randbedingungen erreichen kann. Die "Optimierung" kann je nach Bedingungen bis zu einigen Stunden dauern und liefert einen ausführlichen/hoch aufgelösten Designvorschlag. Die Option "Herstellen" dauert zeitlich am Längsten, denn hier wird die Auflösung zum Ende der Optimierung deutlich erhöht, um im Detail eine gut druckbare Oberfläche und Struktur des Bauteils zu erhalten.
Optimization Goal
Anschließend muss das Optimierungsziel definiert werden. Bei AMendate wird eine Zielspannung angegeben, die während der Optimierung als Leitwert dient. Hierfür kann ein Dauerfestigkeitswert des Materials verwendet werden und dieser mit einem zusätzlichen Sicherheitsfaktor versehen werden. Die Software berücksichtigt intern bei der Designfindung keine Sicherheitsfaktoren. Dies muss vom Ingenieur in der maximalen Spannung eingerechnet werden. Durch die spannungsorientierte Optimierung wird ein optimal gleichmäßig belastetes Bauteil entwickelt, bei dem vor allem die Übergänge zwischen Streben und Flächen optimal und mit wenigen Spannungsüberhöhungen ausgeformt sind. Dem bereits erwähnten Einheitensystem entsprechend ist die Standardeinheit der Spannung MPa = Nmm^2.
Symmetry
Zur Berechnung von symmetrischen Bauteilen kann eine Achsensymmetrie um den Koordinatenursprung angewählt werden. Empfohlen wird hierfür ein Modellaufbau mit vollständiger Geometrie. Für die Berechnung wird dann jedoch nur jeweils der positive Bereich der Raumachsen verwendet, das Ergebnis dann in den negativen Bereich gespiegelt. Hierbei werden sowohl die Geometrie als auch die Randbedingungen gespigelt. Daher dürfen bei Belastungen über den Nullpunkt hinaus (Bsp.: Flächenlast einer symmetrischen Brücke) nur der Lastanteil für den positiven Koordinatenraum angegeben werden (halbierte Kraft, entsprechend der halben Fläche, Bsp: nur Kraft auf einer der Brückenseiten). Für eine korrekte Berechnung müssen ALLE Randbedingungen symmetrisch sein, dies gilt für Lagerungen, Kräfte und Momente. Insbesondere bei der Defintion von Momenten schleichen sich hier leicht Fehler ein.
Configuration File
Zum Schluss können alle angegebenen Informationen in der Konfigurationsdatei eingesehen werden. Hier sind ebenfalls weitere spezielle Einstellungen möglich, die vor allem für Simulationsexperten von Interesse sind.
Unter den User Setting können folgende Einstellungen getätigt werden:
...
Eine Analyse des Gestaltungsbereichs wird durchgeführt.
Weitere Einstellungen können im Bereich FEM vorgenommen werdenFurther it can be selected whether only an "estimation", an "optimization" or an "optimization" up to the printable design should take place. In most cases, an "estimation" only takes a few minutes and gives an overview of the weight and stress development that an optimization can achieve under the given boundary conditions. The "optimization" can take up to a few hours, depending on the conditions, and provides a detailed/high resolution design proposal. The "Manufacture" option takes the longest time, because here the resolution at the end of the optimization is significantly increased in order to obtain a good printable surface and structure of the component in detail.
Optimization Goal
Then the optimization target must be defined. With AMendate, a target stress is specified that serves as the reference during optimization. For this purpose, a fatigue strength value of the material can be used and provided with an additional safety factor. The software does not take any safety factors internally into account when determining the design. This must be included in the maximum stress by the engineer. Through the stress-oriented optimization, an optimally uniformly loaded component is developed, in which above all the transitions between struts and surfaces are formed optimally and with few stress increases. The standard unit of stress MPa = Nmm^2 corresponds to the previously mentioned system of units
Symmetry
An axis symmetry around the coordinate origin can be selected for the calculation of symmetrical components. A model structure with complete geometry is recommended for this. For the calculation, however, only the positive area of the spatial axes is used, the result is then mirrored into the negative area. Both the geometry and the boundary conditions are mirrored. Therefore, for loads beyond the zero point (e.g.: area load of a symmetrical bridge), only the load portion for the positive coordinate space may be specified (halved force, corresponding to half the area, e.g.: only force on one of the bridge sides). For a correct calculation ALL boundary conditions must be symmetrical, this applies to fixtures, forces and moments. Errors can easily creep in, especially when defining moments.
Configuration File
Finally, all the specified information can be viewed in the configuration file. Other special settings are also possible here, which are of particular interest to simulation experts.
The following settings can be made under User Setting:
onlyFEM | An analysis of the design area is carried out. |
Further settings can be made in the FEM area:
solver= Extern CGVerbindung zum Solver. | Conection to solver: Externer Solver von solver from AMendate z.B. AMendateCudaSolver.Benutzt einen integrierten konjugierten Gradienten Solver Uses an integrated conjugated gradient solver. |
solverIP=localhost | IP des Externen Solvers. Lokal oder Cloud, wobei die Matrix lokal aufgebaut und an die Berechnungseinheit gesendet wird. Hierbei können große Datenmengen mit entsprechendem Zeitaufwand bewegt werden. |
solverPort=1234 | Port über den der CudaSolver angesprochen wird. Dieser kann beliebig gewählt werden, entsprechend dem angegeben Wert beim Start des Solvers. |
eigenThreads=2 | Anzahl der Threads, die für den Aufbau der Matrix genutzt werden können. Hierbei sollte immer mindestens ein Kern frei bleiben. |
solverMaxMemory=10 | Definition des maximal verfügbaren Speichers für die Steifigkeitsmatrix. Entspricht übertragen der Auflösung des Modell und bestimmt somit die Berechnungszeit. Bei GPU-Solving darf der GPU-RAM nicht überschritten werden. (1 GB bis 14 GB ggfs. bei CPU auch bis über 100 GB) |
...