Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 5 Current »

Goal of this tutorial

  • Get to know the optimisation model setup

  • Create different Generative Designs through parameter variation

Bookshelf.jpg

Training:

Relevant data for this tutorial:

Step 1: Start MSC Apex Generative Design

The program starts and you can directly create your optimisation model

Step 2: Model generation

You can either create the geometry directly in MSC Apex Generative Design or import already existing files. You can import for example .xb, .xt, .step, and .sldprt files into the program.

  • Import/create the Design Space including the Interfaces (Non-Design Spaces) in MSC Apex Generative Design as one solid. For this Bookshelf the already prepared Design Space was imported.

  • Open the Design Space Tool in the Optimization Tools to select the imported Geometry as the Design Space.

  • Create the material in the Materials editor and assign it to the Design Space. In this case the material behaviour is Isotropic.

  • The specific values needed are the Young's Modulus (192372 MPa), Poisson ratio (0.3) and Density (7.97e-6 kg/mm3).

  • The Tension Strength is the maximum allowable stress for the material and is set to 320 MPa.

Step 3: Definition of boundary conditions

Go to the Loads & Boundary Condition Tool to enter the loads and fixations. Displacements, Forces, Moments, Gravity and Pressure Loads can be applied using different selection options.

In this case one force is defined (on the top plate):

Name

Force/Moment/Pressure/Gravity

Direction

Value in N

Force - Moment 1

Force on cell

z

-1000

Three constraints for the three fixations are created and attached to the inner surfaces of the three cylinders:

Name

Direction

Constraint 1

x, y, z (=0)

Constraint 2

x, y, z (=0)

Constraint 3

x, y, z (=0)

Bookshelf_24-1Froce.png

Step 4: Interface Creation

Interfaces have to be created for every functional surface - so every surface where a boundary condition is applied to. With this Tool an offset to the inside with the input “Non-Design Space Thickness” and an offset to the outside with the input “Machining Allowance” is created. The Offset Distance is expanding the Interface to the set value to create material on front faces.

All surfaces on which a boundary condition is applied can be selected directly as an interface with the “Select Faces from Loads and Boundary Conditions” button. The Boundary Condition surfaces will be highlighted and can be selected/deselected. With “Apply” the Non-Design Space Thickness, Machining Allowance and if available Offset Distance values will be applied to the selected surfaces.

  • Three Interfaces are created to insert screws and fixate the Bookshelf to the wall. Therefore, an Non-Design Space Thickness of 2 mm and a Machining Allowance of 1 mm is entered. Because not only the inner faces touching the screw but also the front and back face are supposed to contain material and have sharp, functional faces, an Offset Distance of 3 mm is entered. All Constraints are selected in the table and the settings are applied.

  • One Interface is created on the top plate to use this as the book storage. Therefore, an Non-Design Space Thickness of 1mm and a Machining Allowance of 1mm is entered. Now select the top plate and confirm the selection (MMB).

Note: Sometimes the Interface Offset (usually displayed in red) is not visualized due to a limitation. The correct value will be considered in the optimisation.

Step 5: Definition of Events (load cases)

The next steps are defined in the Studies area.

All boundary conditions must be assigned to the specific load cases, which are defined as Events. The number of Events can be changed by adding/deleting Events to the GD Scenario. The assignment of the boundary conditions to the Events can be made in the Loads & Constrains Window. The already created loads and constraints that concern the Design Space are listed in this window and can be activated for each Event individually.

  • Active in Event1: Force-Moment 1, Constraint 1, Constraint 2 and Constraint 3

Step 6: Definition of optimisation parameters

The optimisation parameters are selected in the Studies Area as well.

The Stress Goal seems to be chosen quite low for the material selection however when considering the low loading conditions, it is a suitable choice. The resulting stresses deliver a well-formed design.

Don’t forget to save the project!

Step 7: Starting the optimisation and visualizing the results

If all data is correct, the optimisation can be started and tracked in the Post Processing. The Analysis Readiness function checks if all information is provided and the optimisation can start.

All result iterations are displayed as soon as they are available. Furthermore, you are able to stop the optimisation in this selection area. However, a Restart is not directly possible.

The optimisation is finished after 64 iterations (Shape Quality: Balanced).

You can check the status of the optimisation in the GD Status and get more information on Warning and Error messages. This can be done directly in the Post-Processing as well as in the Studies tab for an optimisation that has already run.

Step 8: Visualization of Stresses, Displacements & Mass

  • Inside the Post-Processing the von Mises stress and the displacements are visible for all iterations and for every Event

  • The Scale can be influenced individually

Bookshelf_Failure_Medium.pngBookshelf_Displacement_Medium.png

  • The mass of each iteration can be visualized with a diagram

Mass_Plot.png

You can go back to the model setup by clicking the Exit button in the right bottom corner.

Generative Design

  • You can always change the Strut Density, Stress Goal and Complexity to influence the results and try out different options

  • The Complexity can be increased for a higher resolution and more detailed result (increased calculation time!)

  • The Strut Density influences the structures which are formed during optimisation

The optimisations below show the influence of the Strut Density when nothing else is changed.

Strut Density: Medium

StrutDensity_Medium.png

Strut Density Dense

StrutDensity_Dense.png

Strut Density: Sparse

StrutDensity_Sparse.png

The whole MSC Apex Generative Design project with all results can be downloaded here:

You might also be interested in these tutorials:

  • No labels

0 Comments

You are not logged in. Any changes you make will be marked as anonymous. You may want to Log In if you already have an account.