New Commands
The configuration file contains all information necessary for the algorithm to run through the optimisation. It is subdivided into seven different areas: Geometry, Loads and Constraints, Cases (Events), Optimisation, FEMConfig, ImportConfig and Advanced User Settings.
Based on the geometry data and the .config file, the algorithm can run fully autonomous and generate the result files in one subfolder each time it is started in the main folder.
The configuration file starts with the creation timestamp and also indicates the used unit system.
MSC Apex Generative Design | written on Tue Jun 16 11:46:20 2020 |
unitSystem | SI_mm_t |
Geometry
In the Geometry section, the different roles of the geometries for the optimisation are defined. For each geometry used in the optimisation (stl file), either a space or a cell must be existing. A space can get additional information regarding the material whereas cells are only used as markers to define certain areas of the space.
All values are based on the chosen unit system.
Space | |
Space Spacename | Each object is given a unique name Spacename. |
.path = Design.stl | The path is the name of the file. |
.material = Steel | User-defined material name. This will not be used any further in the optimisation process. |
.E-Modul = 210000.000000 | Young's Modulus according to the unit scheme used (here MPa). |
.Poisson = 0.33 | Poisson ratio. |
.density = 7.9e-9 | Density of the material. |
Cells | |
Mask Maskname | Each object is given a unique name Maskname. |
.path = Non_Design_Region_1.stl | The path is the name of the file. |
Mask.Non_Design_Region_3.nonDesign | Defines the mask as a Non-Design Region |
Mask.Non_Design_Region_3.useCentreOfTheSurface Mask.Non_Design_Region_3.useOnlySurface | The mask represents a surface. |
Mask.Non_Design_Region_3.preserve | The mask cannot be removed during the optimisation and will keep a connection to the |
Local Coordinate Systems | |
CoordinateSystem Coordinate_System_1 | Each coordinate system is given a unique name Coordinate_System_1 |
.euler1z =0.000000 .euler2x = 2.417309 .euler3z = 4.712389 .x = -0.071360 .y = -0.022816 .z = 0.02185 | The coordinate system is located/orientated with coordinate values and Euler angles regarding the global coordinate system. |
More information regarding the difference between a space and mask here.
Machining Allowance
The Machining Allowances section collects all information regarding the Machining Allowances and the Design Space including the Machining Allowances to guarantee a correct intersection.
MachiningOffset machOffset_MachiningAllowance_Machining_Allowance_1 | Each Machining Allowance is given a unique name. |
.mask = Maskname | Defines to which mask the offset refers. |
.offset = 0.001000 | Defines the thickness of the Machining Allowance in the chosen unit. |
Mask DesignSpace_machiningOffset offsetSpace = DesignSpace_machiningOffset | Defines the geometry of the intersection model including Machining Allowances. |
Loads and Constraints
The Loads and Constraints section collects all information regarding the loads and fixations applied to the different masks.
Load Force_-_Moment_1 | A force is marked with the word "Load" and additionally gets a name. |
Moment Force_-_Moment_2 | A moment is marked with the word "Moment" and additionally gets a name. |
Acceleration Apply_gravity_1 .space = | An acceleration is marked with the word "Acceleration" and additionally gets a name. The acceleration is always applied to the whole Design Space. |
Pressure Pressure_1 | A pressure load is marked with the word "Pressure" and additionally gets a name. |
Displacement Constraint_1 | A fixation is marked with the word "Displacement" and additionally gets a name (dis1). For fixations, the degree of freedom (x, y, z) is subsequently defined by a prescribed displacement of 0. |
.mask = Maskname | The mask affected by the boundary condition (Maskname) is selected |
.x = | Boundary condition in x-direction |
.y = | Boundary condition in y-direction. |
.z = | Boundary condition in z-direction. |
Cases
The previously defined loads and fixations are combined into Events (load cases).
Case Event_1.Force_-_Moment1 Case Event_1.Constraint_1 | The Event is marked with the word "Case" and additionally gets a name. The conditions are listed directly after the name distinguished by “.” |
optimisation
In this section the optimisation parameters are entered.
optimizeSpace = | Definition of the Design Space. |
startSpace = | If you have added a Start Space via the Advanced User Settings you can find it here. |
strutDensity = dense medium sparse | Determine the style of the result structure. More information here |
shapeQuality = preview balanced fineTune | Selection of the number of iterations being calculated. More information here |
Optimizer Global target stress = | Global optimisation Stress Goal |
Optimizer Case Event_1 target stress = | Event specific Stress Constraint for specific Event (Event_1) |
FEMConfig
solver= Extern CG | Connection to the solver. External CudaSolver. CG Uses an integrated conjugated gradient solver. |
solverIP=localhost | IP of the external solver, localhost for the same workstation. IP for cloud, for what the matrix is built locally and sent to the calculation unit. Large amounts of data can be moved with a corresponding amount of time. |
solverPort=42001 | Port which is used to access the CudaSolver. This can be selected arbitrarily, according to the specified value when starting the solver. (The default port for the Cuda service is 42001) |
eigenThreads=4 | Number of CPU threads that can be used to build the matrix. At least two cores should always remain free. We recommend to use 2-6 threads. |
complexity=14.000000 | Defines how complex the design is getting. More information here. |
solverUsedGpuMax=n | Maximum number of GPUs used by the optimisation (support GPUs: Nvidia Quadro Graphics Cards supported by CUDA Driver) |
ImportConfig
detail=auto | Detail refers to the edge length of the FEM elements and can either be calculated automatically depending on the "Complexity" or set manually. In the case of a defective ST-file, the detail should be set manually, since the calculation of the volume has an error and the automatic estimation cannot take place. A reduction of the detail by half results in an 8-times change of the calculation time. |
ExportConfig
The following output files can be selected.
Default export settings | |
export_ply_name_binary_Dis | |
export_ply_name_binary_Stress | |
export_allCasesInSingleFile | Generates file containing stress and displacement, if activated (combined file for all Events) |
export_stl_name_MC_Smooth | Result geometry |
export_ply_name_offsetSpaceIntersection | Result geometry including Machining Allowances |
Additional export options: Stresses | |
export_ply_name_Stress_RGB | Stresses: ply in colour |
export_ply_name_Stress | Stresses: ply values for nodes |
export_ply_name_binary_Stress | Stresses: ply values for nodes in binary format |
export_ply_name_Stress_Prop | Stresses: ply values for facets |
export_CSV_Element_StressAndDis | Save csv File stress and Displacement (each for loadcase) |
Additional export options: Displacements | |
export_ply_name_Dis_RGB | Displacements: ply in colour |
export_ply_name_Dis | Displacements: ply values for nodes |
export_ply_name_binary_Dis | Displacements: ply values for nodes in binary format |
export_ply_name_Dis_Prop | Displacements: ply values for facets |
Additional export options: Result Geometry | |
csv_Boundary_Reaction csv_Boundary_Reaction_all | suit of csv files for knots loads and reaction visualization |
noIntersection | smoothed not intersected geometry is written out |
Advanced User Settings
Have a look at the Advanced User Settings
Using the expert settings, you can change the resolution and switch between the individual resolution levels to influence the result. These settings overwrite the selection of the DesignType (dense, medium, sparse), as they are only default settings for the ones described here. These should not be accessible via standard GUI, but maybe with an additional text editor inside the GUI.
When choosing a startSpace, these settings should be made to reduce the computational effort even more. The "coarser" resolution levels can thus be skipped and it can be started directly with a finer level (Level 1 or even Level 0). It is important that both level definitions are consistent.
Influencing the design | |
UpSampleConfig fOptimizer_switchAddRemove=58 |
|
iteration .level_3=20" .level_2=20" .level_1=20" .level_0=10" | Specify how many iterations are calculated at which resolution level. Note that convergence should be achieved at each level. Default settings normal: 20, 20, 20, 10 Default settings massive: 16, 40, 4, 4 Default settings filigree: 10, 10, 40, 10 |
fOptimizer_stressPercentGoal .level_3=30 .level_2=40 .level_1=90 .level_0=100 | The percentage at which the target stress is reached is set. Default settings normal: 30, 40, 90, 100 Default settings massive: 60, 90, 95, 100 Default settings filigree: 10, 25, 50, 100 |
Symmetry Settings This is an unsupported feature in MSC Apex Generative Design 2020 FP1. Please find more information here. | |
symmetry.x symmetry.y symmetry.z | x-axis as symmetry plane (Y-Z-Plane). y-axis as symmetry plane (X-Z-Plane). z-axis as symmetry plane (X-Y-Plane). |
Add Comment