...
Import/create the Design SpaceHow we understand Geometry including the How we understand GeometryNon-Design SpacesHow we understand Geometry in MSC Apex Generative Design. For this Pedal the already prepared Design Space and Non-Design Spaces were imported.
The CAD-file includes several solids. Thus, only one solid is supported for an optimisation, with a Boolean operation the solids can be merged to one. Activate Merge Solids as Cells to create partitions which can be used for Non-Design Spaces.
Open the Design Space Tool in the Optimization Tools to select the imported Geometry as the Design Space. Activate the Symmetric Design Constraint and select the YZ plane to set up the symmetric optimisation.
Non-Design Spaces have to be selected using the Non-Design Spaces Tools. In this case all already existing cells (partitions) can be selected
Machining Allowances should be applied to every functional surface. Adjacent Faces should be selected at once, to create one coherent Machining Allowance. Therefore, the automatic execution mode can be turned off.
In this case a value of 1 mm was chosen. How much Machining Allowance is necessary, depends on the dimensions of the part and the manufacturing process/machine.
For the next steps, the Non-Design Spaces as well as the Machining Allowances are hidden.
Create the material Steel in the Materials editor and assign it to the Design Space
The specific values needed are the Young's Modulus (192372 MPa), Poisson ratio (0.3) and Density (7.97e-6 kg/mm3)
...
In this case only one force is defined on the contact plate with the foot:
Name | Force/Moment/Pressure/Gravity | Direction | Value in N |
---|---|---|---|
Force-Moment1 | Force | y | -1000 |
...
One constraint is created and attached on the inner surface of the cylinder:
Name | Direction |
---|---|
Constraint 1 | x, y, z (=0) |
...
Step 4: Definition of Events (load cases)
...
The optimisation parameters are selected in the Studies AreaStudy, Scenario & Event as well.
Select the Strut Density: Medium
Select the Shape Quality: Balanced
Set the Complexity Setting: 10
Enter the Stress Goal: 50 MPa
...
The optimisation is finished after 64 iterations (Shape Quality: Balanced).
You can check the status of the optimisation in the GD Status and get more information on Warning and Error messages. This can be done directly in the Post-Processing as well as in the Studies tab for an optimisation that has already run.
...
Generative Design
You can always change the Strut Density, Stress Goal and Complexityto influence the results and try out different options
The Complexitycan be increased for a higher resolution and more detailed result (increased calculation time!)
The Strut Densityinfluences the structures which are formed during optimisation
...
The mass of each iteration can be visualized with a diagram
...
You might also be interested in these tutorials:
...