Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Links, Images, Project

Info

Goal of this tutorial

  • Get to know the optimisation model setup

  • Create different Generative Designs through parameter variation

...

Training:

Relevant data for this tutorial:

View file
nameBookshelf_DesignSpace.x_t

Step 1: Start MSC Apex Generative Design

...

The program starts and you can directly create your optimisation model

...

Step 2: Model generation

You can either create the geometry directly in MSC Apex Generative Design or import already existing files. You can import .xb, .xt, .step, and .sldprt files into the program.

  • Import/create the Design Space including the Non-Design Spacesin MSC Apex Generative Design 2020 as one solid. For this Bookshelf the already prepared Design Space was imported.

  • Open the Design Space Tool in the Optimization Tools to select the imported Geometry as the Design Space

    Image RemovedImage Added
  • Non-Design Spaceshave to be selected using the optimisation Non-Design Spaces Tools. In this case the top plate is created as a Non-Design Spaces with an offset of 1 mm and the three screw holes are being used with an offset of 3 mm for each.

    Image RemovedImage Added
  • Next the Machining Allowances are for the functional surfaces are being defined with the Machining Allowance Tool. For this Geometry should be applied to every functional surface. Adjacent Faces should be selected at once, to create one coherent Machining Allowance. Therefore, the automatic execution mode can be turned off.

  • In this case a value of 1 mm was chosen. How much Material Machining Allowance is necessary, depends on the dimensions of the part and the manufacturing process/machine.

  • The top plate can directly be selected. For the screw holes all functional surfaces have to be selected at once. Therefore, the flash is deactivated and all surfaces are selected and confirmed as in the picture below:

    Image RemovedImage Removed
  • Image Added

For the next steps, the Non-Design Spaces as well as the Machining Allowances are hidden.

  • Create the material in the Materials editor and assign it to the Design Space

  • The specific values needed are the Young's Modulus (192372 MPa), Poisson ratio (0.3) and Density (7.97e-6 kg/mm3)

...

  • Image Added

Step 3: Definition of boundary conditions

Go to the Loads & Boundary Condition Tool to enter the loads and fixations. Displacements, Forces, Moments, Gravity and Pressure Loads can be applied using different selection options.

In this case one force is defined (on the top plate):

Name

Force/Moment/Pressure/Gravity

Direction

Value in N

Force - Moment 1

Force on cell

z

-1000

...

One constraint for the three fixation volumes is created and attached on the Non-Design Spaces:

Name

Direction

Constraint 1

x, y, z (=0)

Constraint 2

x, y, z (=0)

Constraint 3

x, y, z (=0)

...

Step 4: Definition of Events (load cases)

The next steps are defined in the Studies area.

All boundary conditions must be assigned to the specific load cases, which are defined as Events. The number of Eventscan be changed by adding/deleting Eventsto the Meshless Generative Design GD Scenario. The assignment of the boundary conditions to the Eventscan be made in the Loads & Constrains Window. The already created loads and constraints that concern the Design Space are listed in this window and can be activated for each Eventindividually.

  • Active in Event1: Force-Moment 1 , and Constraint 1, Constraint 2 and Constraint 3

...

...

Step 5: Definition of optimisation parameters

The optimisation parameters are selected in the Studies Area as well.

Don’t forget to save the project!

...

Step 6: Starting the optimisation and visualizing the results

If all data is correct, the optimisation can be started and tracked in the Post Processing. The Analysis Readiness function checks if all information is provided and the optimisation can start.

...

All result iterations are displayed as soon as they are available. Furthermore, you are able to stop the optimisation in this selection area. However, a Restart is not directly possible.

The optimisation is finished after 64 iterations (Shape Quality: Balanced).

...

Generative Design

  • You can always change the Strut Density, Stress Goal and Complexityto influence the results and try out different options

  • The Complexitycan be increased for a higher resolution and more detailed result (increased calculation time!)

...

  • The Strut Densityinfluences the structures which are formed during optimisation

...

The optimisations below show the influence of the Strut Density when nothing else is changed.

Strut Density: Medium

...

Strut Density: Dense

...

Strut Density: Sparse

...

Step 7: Visualization of Stresses, Displacements & Mass

  • Inside the Post Processing the von Mises stress and the displacements are visible for all iterations and for every Event

  • The

...

  • Scale can be influenced

...

  • individually

...

  • The mass of each iteration can be visualized with a diagram

...

You might also be interested in these tutorials: