Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

First of all, a distinction can be made between the three settings "filigree", "normal" and "massive". This influences the design, which means that "filigree", "massive" or "normal" structures are formed during optimization. An example for the different settings is shown in the picture below. It should be noted that an optimization result with the "Filigree" setting is not automatically lighter than a "Massive" setting, because many fine struts can make the weight heavier than a few massive ones.

Image AddedImage AddedImage Added

Figure 1: filigree, normal, massive


Calculation Type


Further it can be selected whether only an "estimation", an "optimization" or an "optimization" up to the printable design should take place. In most cases, an "estimation" only takes a few minutes and gives an overview of the weight and stress development that an optimization can achieve under the given boundary conditions. The "optimization" can take up to a few hours, depending on the conditions, and provides a detailed/high resolution design proposal. The "Manufacture" option takes the longest time, because here the resolution at the end of the optimization is significantly increased in order to obtain a good printable surface and structure of the component in detail.

Image AddedImage AddedImage Added


Figure 2: estimate, optimize, manufacture


Optimization Goal

Then the optimization target must be defined. With AMendate, a target stress is specified that serves as the reference during optimization. For this purpose, a fatigue strength value of the material can be used and provided with an additional safety factor. The software does not take any safety factors internally into account when determining the design. This must be included in the maximum stress by the engineer. Through the stress-oriented optimization, an optimally uniformly loaded component is developed, in which above all the transitions between struts and surfaces are formed optimally and with few stress increases. The standard unit of stress MPa = Nmm^2 corresponds to the previously mentioned system of units

...