...
View file | ||
---|---|---|
|
Step 1: Start MSC Apex Generative Design
The program starts and you can directly create your optimisation model
...
Step 2: Model generation
You can either create the geometry directly in MSC Apex Generative Design or import already existing files. You can import .xt, .xb, .step, and .sldprt files into the program.
...
Name | Young’s Modulus | Poisson ratio | Density | Tension strength |
---|---|---|---|---|
Steel | 192.000 MPa | 0,3 | 7,97 g/cm³ | 515 MPa |
Aluminium | 72.000 MPa | 0,34 | 2,7 g/cm³ | 200 MPa |
PA12 | 1.700 MPa | 0,39 | 0,9 g/cm³ | 42 MPa |
...
Step 3: Definition of boundary conditions
Go to the Loads & Boundary Condition Tool to enter the loads and fixations. Displacements, Forces, Moments, Gravity and Pressure Loads can be applied using different selection options.
...
Name | Direction |
---|---|
Constraint 1 | x, y, z (=0) |
Constraint 2 | x, y, z (=0) |
Constraint 3 | x, y, z (=0) |
Constraint 4 | x, y, z (=0) |
...
Step 4: Interface Creation
Interfaces have to be created for every functional surface - so every surface where a boundary condition is applied to. With this Tool an offset to the inside with the input “Non-Design Space Thickness” and an offset to the outside with the input “Machining Allowance is created. The Offset Distance is expanding the Interface to the set value to create material on front faces.
Four Interfaces are created on the interfaces between the Design Space and the electric motor and four on the inner surfaces of the fixation points at the bottom. Hide the motor as well as the screws to have a better view. A Non-Design Space Thickness of 3 mm, an Offset Distance of 4 mm and a Machining Allowance of 1 mm is entered. Now select the surface and confirm the selection (MMB).
...
Step 5: Definition of the Generative Design Configuration
In the next step the interaction between the Retained Volumes and the Design Space is defined. For this the Generative Design Configuration Tool is used. Start the Tool and choose the corresponding objects for each step, then click the MMB. For this configuration, only the Design Space is selected as Initial Design Space and the electric motor and screws as Retained Volumes
...
The Generative Design Part 1 is a copy of the initial Design Space. Thus, the initial Design Space can be hidden.
Boundary Conditions which have been attached to the Design Space and not to a Retained Volume need to be re-applied to the new Generative Design Part 1!
Step 6: Definition of Events (load cases)
The next steps are defined in the Studies area.
...
Active in Event1: Force-Moment 1 and all Constraints
Active in Event2: Force-Moment 2 and all Constraints
...
Step 7: Definition of optimisation parameters
The optimisation parameters are selected in the Studies Area as well.
...
Don’t forget to save the project!
Step 8: Starting the optimisation and visualizing the results
If all data is correct, the optimisation can be started and tracked in the Post Processing. The Analysis Readiness function checks if all information is provided and the optimisation can be started.
...
You can check the status of the optimisation in the GD Status and get more information on Warning and Error messages. This can be done directly in the Post Processing as well as in the Studies tab for an optimisation that has already run.
...
Generative Design
You can always change the Strut Density, Safety Factor and Complexity to influence the results and try out different options
The Complexity can be increased for a higher resolution and more detailed result (increased calculation time!)
The Strut Density influences the structures which are formed during optimisation
Step 9: Visualization of Stresses, Displacements & Mass
The legend can be influenced in different ways. You can add and reduce the stress/displacement steps, enlarge different steps and set new minimum and maximum values. The mass of each iteration can be visualized with a diagram.
...
View file | ||
---|---|---|
|