Links, Workflow, Images, Project
Info |
---|
Goal of this tutorial
|
...
Training:
Relevant data for this tutorial:
View file | ||
---|---|---|
|
Step 1: Start MSC Apex Generative Design 2021
The program starts and you can directly create your optimisation model
...
Step 2: Model generation
You can either create the geometry directly in MSC Apex Generative Design or import already existing files. You can import .xb, .step, and .sldprt files into the program.
Import/create the Design Spaceincluding theNon-Design Spacesin MSC Apex Generative Design. For this Pedal the already prepared Design Space and Non-Design Spaces were imported.
The CAD-file includes several solids. Thus, only one solid is supported for an optimisation, with a Boolean operation the solids can be merged to one. Activate Merge Solids as Cells to create partitions which can be used for Non-Design Spaces.
Open the Design Space Tool in the Optimization Tools to select the imported Geometry as the Design Space. Activate the Symmetric Design Constraint and select the YZ plane to set up the symmetric optimisation.
Non-Design Spaces have to be selected using the Non-Design Spaces .
...
Tools. In this case all already existing cells (partitions) can be selected
Machining Allowances should be applied to every functional surface. Adjacent Faces should be selected at once, to create one coherent Machining Allowance. Therefore the automatic execution mode can be turned off.
In this case a value of 1 mm was chosen. How much Machining Allowance is necessary, depends on the dimensions of the part and the manufacturing process/machine.
For the next steps, the Non-Design Spaces as well as the Machining Allowances are hidden.
Create the material Steel in the Materials editor and assign it to the Design Space
The specific values needed are the Young's Modulus (192e3 192372 MPa), Poisson ratio (0.3) and Density (7.97e-6 kg/mm3)
...
- The Non-Design Spaces will change the colour and are listed in the model tree
Step 3: Definition of boundary conditions
Go to the Loads & Boundary Condition Tool to enter the loads and fixations. Displacements, Forces, Moments, Gravity and Pressure Loads can be applied using different selection options.
In this case
...
The loads will be automatically mirrored through the symmetry planes
...
only
...
In this case only one force is defined in the positive coordinate half ( on the top contact plate )with the foot:
Name | Force/Moment/Pressure/Gravity | Direction | Value in N |
---|---|---|---|
Force-Moment1 | Force | y | -1000 |
...
Name | Direction |
---|---|
Constraint 1 | x, y, z (=0) |
...
Step 4: Definition of Events (load cases)
The next steps are defined in the Studies area.
All boundary conditions must be assigned to specific load cases, which are defined as Events. The number of Events can be changed by adding/deleting Eventsto the Meshless Generative Design GD Scenario. The assignment of the boundary conditions to the Eventscan be made in the Loads & Constrains Window. The already created loads and constraints that concern the Design Space are listed in this window and can be activated for each Eventindividually.
Active in Event1: Force-Moment 1 and Constraint1
Step 5: Definition of optimisation parameters
The optimisation parameters are selected in the Studies Areaas well.
Select the Strut Density: Medium
Select the Shape Quality: Balanced
Set the Complexity Setting: 14
Enter the Stress Goal: 50 MPa
...
Step 6: Adding Advanced User Settings (Symmetry)
Advanced User Settings can be added to each scenario by activating the text field with a right click on the specific scenario.
To use the symmetry constraints correctly some conditions have to be satisfied:
The geometry has to be symmetrical
The boundary conditions have to be symmetrical
The model has to be placed in the global coordinate origin
In this case the symmetry constraints are added. Therefore, the Advanced User Command symmetry.z (symmetry plane X-Y) is entered.
...
To ensure the model is placed suitable to the global coordinate origin the Transform Tool can be used. If the Model is shifted to the global planes, it can be moved to the global coordinate origin.Don’t forget to save the project!
Step
...
6: Starting the optimisation and
...
visualizing the results
If all data is correct, the optimisation can be started and tracked in the Post Processing. The Analysis Readiness function checks if all information is provided and the optimisation can start.
...
All result iterations are displayed as soon as they are available. Furthermore, you are able to stop the optimisation in this selection area. However, a Restart is not directly possible.
The optimisation is finished after 64 iterations (Shape Quality: Balanced).
Generative Design
You can always change the Strut Density, Stress Goal and Complexityto influence the results and try out different options
The Complexitycan be increased for a higher resolution and more detailed result (increased calculation time!)
...
The Strut Densityinfluences the structures which are formed during optimisation
Step 7: Visualization of Stresses, Displacements &
...
Mass
The legend can be influenced in different ways. You can add and reduce the stress/displacement steps, enlarge different steps and set new minimum and maximum values.
Von Mises stress
...
Displacement
...
The mass of each iteration can be visualized with a diagram
...
You can always change the Strut Density, Stress Goal and Complexity to influence the results and try out different options
The
...
The whole MSC Apex Generative Design project with all results can be downloaded here:
...
Coming Soon!
You might also be interested in these tutorials:
Generative Design - Bookshelf
Generative Design - GD-Bracket
Restart Optimisation