Links, Images, Project
Info |
---|
Goal of this tutorial
|
Training:
Relevant data for this tutorial:
View file | ||
---|---|---|
|
Step 1: Start MSC Apex Generative Design 2020
The program starts and you can directly create your optimisation model
...
Step 2: Model generation
You can either create the geometry directly in MSC Apex Generative Design or import already existing files. You can import .xb, .xt, .step, and .sldprt files into the program.
...
Non-Design Spaces have to be selected using the optimisation Tools. In this case the four fixation points and two force application points are selected and a Non-Design Spaces with an offset of 3 mm is created for each.
...
Step 3: Definition of boundary conditions
Go to the Loads & Boundary Condition Tool to enter the loads and fixations. Displacements, Forces, Moments, Gravity and Pressure Loads can be applied using different selection options.
Creation of local coordinate systems to apply forces
Because the imported Jet Engine Bracket CAD-file is shifted and rotated to the global coordinate system,local coordinate systemscan be used to apply the forces and moments.
...
Therefore, the Loads & Boundary Condition Tool is needed. Under Displacement Constraints a “clamped” constraint can be chosen, which locks translations in all three directions. On the left side of the Tool the relevant geometry choice can be selected. In this case surfaces are selected to attach the constraints on the Non-Desing Spaces.
...
Step 4: Definition of load cases
The next steps are defined in the Studies area.
...
For each Force - Moment an Event is created including all four Constraints:
...
Step 5: Definition of optimisation parameters
The optimisation parameters are selected in the Studies Areaas well.
...
Don’t forget to save the project!
...
Step 6: Starting the optimisation and visualize the results
If all data is correct, the optimisation can be started and tracked in the Post Processing. The Analysis Readiness function checks if all information is provided and the optimisation can start.
...
The optimisation is finished after 64 iterations (Shape Quality: Balanced).
...
Generative Design
You can always change the Strut Density, Stress Goal and Complexity to influence the results and try out different options
The Complexity can be increased to realize a higher resolution (increases calculation time!)
Step 7: Visualization of Stresses & Displacements
Inside the Post Processing the von Mises stress and the displacements are visible for all iterations
The Scale can be influenced individually
...
Generative Design Results
...
For more information have a look at the MSC Apex Generative Design project. Coming soon!